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Abstract

In a model with multiple Pareto-ranked equilibria we endogenize
the equilibrium selection probabilities by adding trade in assets that
pay based on the realization of a sunspot. Asset trading imposes
restrictions on the equilibrium set. When the probability of a low
outcome is high enough, the coordination game becomes more like a
prisoner’s dilemma in which the high equilibrium disappears because
of the asset positions that agents trade towards induce some agents
to withhold their effort. We derive an upper bound on the probabil-
ities of the low-level equilibrium that we interpret as a disaster. We
derive asset pricing implications including the disaster premium, and
we study the effect of shocks to beliefs over actions and the implied
news in stock prices.

1 Introduction

In a coordination game with multiple Pareto-ranked equilibria, an equilib-
rium can be chosen by an extrinsic device such as a sunspot. The mapping
between sunspots and equilibria is in most of not all models exogenous, as
is the distribution of the sunspot and, hence, the distribution of equilibria.
The sunspot is a public signal that correlates players’ actions.

We show that, roughly speaking, the probability of the low equilibrium is
high enough (but less than unity), trading on the equilibrium-choice signal –
the sunspot – may transform the coordination game into a prisoner’s dilemma
game with a unique low-level equilibrium. Of course, for trading on sunspots
to take place at all, their impact on equilibria must be non-degenerate.
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Our paper distinguishes between sunspots and the equilibria that result
therefrom. The mapping from sunspots to equilibrium play is endogenous.
This is done through a prior stage in which, before taking a real action,
players trade securities that pay contingent on the realization of a sunspot.
The choice of which securities to trade reflects the Nash equilibrium beliefs
that determine what sunspot state maps into what aggregate action profile
and, hence, the probabilities with which equilibria arise, as well as the set of
equilibria.

Adding a prior stage generally changes equilibrium play in the subsequent
game itself. In our context, the prior stage entails trading on sunspots, and
it bounds from above the probability with which the “low” (also referred
to as “disaster”) equilibrium is chosen. The set of equilibrium distributions
therefore shrinks.

In general, asset trade can destroy equilibria, or create new ones, or leave
the equilibrium set unchanged. We argue that we have uncovered an intu-
itively appealing mechanism whereby asset trading destroy the high equilib-
rium. The model has two types of agents, rich and poor. Each type is better
off in the high equilibrium than in the low equilibrium, but when equilibria
are chosen by a sunspot, both types face aggregate risk. This risk cannot be
eliminated, but the consumption of the two types can be made more corre-
lated if they trade on the sunspot’s realization Poor agents especially wish
to insure against the low equilibrium, but this means that they must pay
the rich in the high equilibrium. But the rich would in that event become
even richer and, because their utility of consumption is concave, they may
not be willing to exert the effort they would exert if they did not purchase
any assets. If the transfer of resources is large enough, the high equilibrium
fails to exist.

We stress the similarity to the prisoner’s dilemma because allowing for
asset trade reduces all agents’ expected utility. The type that wants to
deviate from the high equilibrium is the rich type. He finds it optimal to buy
claims to so much income in the high state that he will not want to work. But
the existence of the high equilibrium requires that both types exert effort.

How is the disaster probability endogenized? The size of the transfer
between the rich and the poor rises with the probability that the low equilib-
rium will occur. For the low equilibrium to exist, its probability must be low
enough. So, that the transfer to the rich in high states is low enough that
the high equilibrium can exist. Agents trade portfolios of Arrow securities.
A continuum of such securities exists. The composition of a portfolio de-
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termines the probability that it pays. Asset trade at the first stage changes
agents’ payoffs at the production stage. This then determines the equilibrium
set at the production stage. A high probability of disasters cannot arise, for
it would create too large a transfer to the rich in those sunspot states that
are believed to lead to the high equilibrium. Such probabilities are therefore
not consistent with equilibrium, and this is the sense in which equilibrium
selection is endogenized. Generally, the set of surviving disaster probabili-
ties has an open interior – we cannot, in other words, derive the probability
uniquely

Our paper adds to several lines of research:

(i) The correlated equilibrium concept of Aumann (1974) in which me-
diator sends out a vector of messages, one message to each player. The
distribution of the message vector is common knowledge among the players
and each player maximizes his utility conditional on the message that he has
received. The set of correlated equilibria depends on the structure of the
game, and our paper provides an example in which the predictive content of
the game is raised by adding a prior asset-trading stage.

(ii) The research on trade on sunspots; Peck and Shell (1991) and Forges
and Peck (1995) take the probabilities of equilibrium selection to be exoge-
nous; we endogenize these probabilities.

(iii) The research on news shocks, in particular shocks to beliefs about the
actions of others, such as studied by Angeletos and La’O (2014). In contrast
to them, we have multiple equilibria. We replicate Hall’s (1988) finding that
consumption reacts to lagged consumption and the stock-price index.

(iv) The research on coordination failures as causes of the real business
cycle; Benhabib and Farmer (1999), and to asset pricing – Lagos and Zhang
(2013) and Benhabib and Wang (2014). It does not study how asset trading
may restrict equilibrium actions and their probabilities.

(v) The research on coordination failures as causes of bank runs; based
on logic different from ours, Pauzner and Goldstein (2005) derive a unique
probability of a bank-run in the model of Diamond and Dybvig (1983). Our
method generally leads us only to a range of admissible disaster probabilities.

(vi) The literature on disasters and their relation to asset pricing. We
focus on coordination failures, but there are other disasters such as wars and
natural catastrophes. Our asset prices display a disaster premium that is
related to disaster size and its probability. The disaster size is 0.29 and the
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disaster probability is only 2% both are similar to the estimates in Barro
(2006). As the probability of disasters increases, the premium grows. How-
ever, a higher than 2% probability of a disaster is not sustainable as trading
in the financial markets changes the set of possible equilibria. Thus, we pro-
vide a theory of disaster risk. Additionally, we find that in probable contrast
to wars and natural catastrophes, the size of disasters and their frequency
are positively correlated across equilibria: The larger the disaster, the higher
is the likelihood that it can occur.

(vii) Research on how financial development relates to real activity. Fi-
nancial markets reduce the incidence of disaster outcomes and they reduce
the inequality of consumption in disasters; in this sense they are beneficial.

Plan of paper.—We begin with a model without capital markets. We then
show how capital markets restrict the equilibrium set. We then look at asset
pricing, the disaster premium and the effects of news shocks as manifested
through changes in asset prices. Finally we study how news shocks about
the actions of others manifest themselves in stock prices, and the induced
correlation between stock prices and real activity.

2 The model

Consider a production economy with two types of individuals lasting one
period.

Endowments.—Type i receives endowment zi, with 0 < z1 < z2. The
fraction of type i agents is fi.

Preferences.—Utility depends on consumption c ≥ 0 and effort x ∈ {0, 1}:

U(c)− κx, (1)

where κ is the disutility of effort.

Production.—Let
x̄ =

∑

fixi

denote the per-capita effort. We restrict our attention to symmetric pure
strategy equilibria in which all agents of one type exert the same effort. As
a function of own effort x and aggregate effort x̄, an agent’s output is

y(x, x̄) = (α + x̄)x.
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Aggregate output is zero when x̄ = 0, and 1 + α when x̄ = 1.

Consumption.—Consumption takes place after production has taken place
and after assets and obligations are settled. If financial markets are closed,
an agent consumes his endowment z and his output y which are his only
sources of income. That is, c = z+y(x, x̄) > 0. If financial markets are open,
consumption also includes asset payoffs.

Disaster size.—Aggregate consumption in the low equilibrium relative to
that in the high equilibrium is

z̄

z̄ + 1 + α
> 0.71, (2)

where z̄ = f1z1 + f2z2 is the average endowment. The lower bound in (2) is
based on estimated from Barro (2006).

Aggregate shocks.—The model has no intrinsic shocks. There is an ex-
trinsic variable called a “sunspot.” We depart from the literature in that we
have more sunspot realizations than there are equilibria. In fact, the sunspot
can take on a continuum of values, as does temperature for example. The
distribution of the sunspot variable is exogenous, but the mapping between
sunspots and equilibrium play is endogenous.

The mechanism that endogenizes the mapping is agents’ selection of what
portfolio to trade, and the resulting beliefs concerning equilibrium play. As
the agents choose which portfolio they want to trade among themselves, they
will endogenize the probabilities with which the equilibria are selected. That
is, they will endogenize the mapping between the sunspots and equilibrium
play. We now define our terms more precisely.

Sunspots.—A sunspot is an exogenous random variable s that is uniformly
distributed on [0, 1] or, more formally, has Lebesgue measure µ(s) over the
Borel subsets of [0, 1]. When financial markets are open, securities pay as
a function of s. We start with the setting in which there are no financial
markets.

The space of sunspot realizations is rich enough that it can be transformed
into any other space of realizations. One can generate two conceptually dif-
ferent types of financial markets. One is for securities that pay depending on
some other extrinsic random variable taking on values in some set other than
[0, 1]. But, this can be shown to be equivalent to trading assets contingent on
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realizations in [0, 1]; one simply needs to change the probabilities associated
with the new set of realizations.

Another market type, more relevant empirically, is for securities that pay
based on outcomes that depend, at least in part, on actions that agents take,
outcomes such as aggregate output. Our methods apply to such cases as
well, as we explain in Section 3.

2.1 Equilibrium without financial markets

When financial markets are closed effort, x, is the only action. An agent’s
action can depend on his endowment, z, and on the sunspot, s. When the
equilibrium is symmetric an agent’s strategy is a function x : {z1, z2} ×
[0, 1] → {0, 1}.

Nash Equilibrium with no assets.—A Nash equilibrium is a function x
such that for all (z, s) ∈ {z1, z2} × [0, 1],

x (z, s) ∈ arg max
x∈{0,1}

{U (z + y [x, x̄ (s)])− κx} (3)

where

x̄ (s) =

2∑

i=1

fix (zi, s) (4)

the following equilibria may arise at a particular sunspot realization s:

Equilibrium “L”.—In the first type of equilibrium x (z, s) = x̄ (s) = 0 for
all z. No individual works. We call this a “low” equilibrium, or equilibrium
L. For this to be an equilibrium we need the following two conditions:

U(z1) > U(z1 + α)− κ,

U(z2) > U(z2 + α)− κ.

That is, if x̄ is zero, the reward to working is just α, and each type should
prefer not to work. Because U is concave it is sufficient that the poor are not
willing to work:

U(z1 + α)− U(z1) 6 κ. (5)
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Equilibrium “H”.—At the other extreme, everyone exerts effort and x (z, s) =
x̄ (s) = 1. We call this a “high” equilibrium, or equilibrium H. For this equi-
librium to exist we need the following two conditions:

U(z1 + α + 1)− κ ≥ U(z1),

U(z2 + α + 1)− κ ≥ U(z2).

Again, because U is concave it is sufficient that the rich are willing to work:

U(z2 + α + 1)− U(z2) > κ. (6)

In equilibria H and L, every agent takes the same action – either every
agent exerts effort or no agent does. There generally are, however, other
equilibria and some of these are symmetric pure strategy equilibria, some
not. In all these equilibria some agents exert effort while others do not.

Equilibrium M.—In this equilibrium only the poor exert effort and x̄ = f1.
We call this a “middle” equilibrium, or equilibrium M. For this equilibrium
to exist we need the following two conditions:

U(z1 + α + f1)− κ > U(z1),

U(z2 + α + f1)− κ < U(z2).

Neither condition implies the other. This is also a symmetric equilibrium.
Note that the conditions guaranteeing equilibria H and L do not involve the
fi, the conditions involving the existence of equilibrium M do depend on the
fi.

Asymmetric equilibria.—In these types of games the number of equilibria
is generically odd. This means that when L and H both exist (see Proposition
1), there will also be a third equilibrium. This third equilibrium will either
by asymmetric so that a fraction of agents of some type play x = 1 while the
remainder play x = 0, or it will be the symmetric equilibrium M.

We shall assume that equilibrium M and the asymmetric equilibria are
never chosen. If they sometimes were chosen, the number of cases proliferates,
but nothing conceptually new is added. Thus we only admit L and H as
possibilities. Sometimes only L exists, sometimes only H, and sometimes
both H and L do.
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Next, we define the parameter set under which both H and L exist, which
is the set of parameters for which (5) and (6) both hold:

Definition 1. Let Paut = {(z1, z2, κ) : U(z2 + α + 1)− U(z2) > κ > U(z1 +
α)− U(z1)}.

Roughly speaking, if α is high relative to κ, equilibrium L does not exist,
and if α is low relative to κ, equilibrium H does not exist. If neither extreme
obtains, L and H both exist. The set Paut is always non-empty. To see this fix
α. Then for any z > 0 we have (κ, z1, z2) = (U(z+α+0.5)−U(z), z, z) ∈ Paut.
That is there is a set, with a non-empty interior, where both the low and the
high equilibria exist. Intuitively, endowment z1 must not be too low as then
type-1 individuals would always work and the L equilibrium would not exist.
Endowment z2 must not be too high as then type-2 individuals would never
work and the H equilibrium would not exist.

Proposition 1. Let U (c) = ln c. Then there exists a non-empty set of
parameters (z1, z2, α, κ) such that equilibria L and H both exist.

Let δ = 1/(eκ−1) ≈ 1/κ. Then in a special case with logarithmic preferences
we have:

Put = {(z1, z2, α, δ) : αδ 6 z1 6 z2 6 (α+ 1)δ}. (7)

Figure 1 summarizes our findings. Region L(H) denotes the set of en-
dowments for which only the L (H) equilibrium exists. Our main interest is
in region H+L that consists of endowments such that both the L and the
H equilibria exist. In what follows we study conditions under which this
set persists when allow individuals to trade financial securities contingent
on sunspots and the sunspots will be correlated with the type of equilibrium
that is played at the production stage. The unmarked top left corner is where
neither of the two equilibria exists.1

2.1.1 Equilibrium selection without financial markets

Let L ⊂ [0, 1] be the set of s realizations that lead to equilibrium L, and
H = [0, 1] \L the set of s realizations that lead to equilibrium H . Define the

1In this region there exist equilibria with x̄ ∈ (0, 1). In such equilibria a fraction of
individuals of the type 1 invests while others do not.
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Figure 1: Equilibrium map

equilibrium indicator ω (s) ∈ {L, H} as follows:

ω =

{
L if s ∈ L
H if s ∈ H

(8)

Thus the probabilities of the two equilibria being played are

Pr (ω = L) = πL and (9)

Pr (ω = H) = πH , (10)

where
πL ≡ µ (L) and πH ≡ µ (H) = 1− πL. (11)

Any pair
(
πH, πL

)
of non-negative numbers summing to unity is admissi-

ble when there are no assets. With assets in the model, however, that is no
longer true.

2.2 Equilibrium with financial markets

Arrow securities.—An Arrow security is in zero net supply, and pays a unit
of consumption in a particular sunspot state s, and zero otherwise, and its
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price is Q (s). There is a continuum of such securities, one for each s. Now
an agent of type z has an additional set of actions consisting of the number
of securities, N (z, s) to hold as claims to consumption in state s. This adds
for each agent a trading strategy N : {z1, z2} × [0, 1] → R. Market clearing
then requires that for each s ∈ [0, 1]

2∑

i=1

fiN (zi, s) = 0 (12)

Budget constraint.—N (z, ·) is agent z’s portfolio. An agent trades before
he receives his endowments and before he receives the output that he will
have produced with the effort that he has expended. His endowment is not
contractible and his trades must therefore net out to zero. For a type-z agent,
the portfolio N (z, ·) must then satisfy2

∫ 1

0

Q (s)N (z, s) dµ (s) = 0. (13)

Nash Equilibrium with asset trade.—It consists of three functions, Q :
[0, 1] → R++, and (x,N) : {z1, z2} × [0, 1] → {0, 1} ×R such that (12) holds
and such that for all (z, s) ∈ {z1, z2} × [0, 1],

N (z, s) = argmax
N(·)

∫ 1

0

max
x∈{0,1}

[U (z + y [x, x̄ (s)] +N (z, s))− κx] dµ (s)

(14)
subject to (13), and such that

x (z, s) = arg max
x∈{0,1}

{U (z + y [x, x̄ (s)] +N (z, s))− κx} , (15)

2It must be true that N(z, s) = c(z, s) − z − y(s) for each type. The corresponding
“inter-temporal” budget constraint then is:

∫
1

0

Q(s)c(z, s)ds = z +

∫
1

0

Q(s)y(s)ds.

Our first stage budget constraint does not include z. The alternative budget constraint

formulation is:
∫ 1

0
Q (s)N (z, s)ds = z. It implies the same intertemporal budget con-

straint, because then N(z, s) = c(z, s)−y(s), and, so, leaves the solution unchanged. This
would not be true if the individuals had to make their portfolio decisions before they knew
their type z. In this case there would be incentives to insure against the risk of being a
type 1.
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where x̄ (s) is given in (4). Strictly speaking there are 4 functions, (Q (s) , x̄ (s) , x (z, s) , N (z, s))
satisfying (4), (12), (14) and (15).

Simple portfolios.—A simple portfolio of Arrow securities is an allocation
that places equal weights on all those securities in which an agent is long and
equal weights on those in which he is short. That is, for any subset A ⊆ [0, 1]

N (z, s) =

{
NA for s ∈ A
N˜A for s ∈ ˜A

.

A simple portfolio places equal weights on the securities s ∈ A, and an equal
weight on securities with s ∈ ˜A, so that (13) reads

NA

∫

A

Qsdµ (s) = −N˜A

∫

˜A

Qsdµ (s) . (16)

Other, unequally-weighted bundles are also possible, but deviations to such
portfolios will not raise any agent’s utility as we shall show later. We shall
adopt the convention that NA ≥ 0 and N˜A ≤ 0, i.e., we shall label A for
the set of securities that are assets in portfolio A, with the remainder being
liabilities. Then a portfolio is characterized fully by two numbers: (A,NA) .
Given this pair we then infer N˜A from the budget constraint. Therefore, we
shall refer to a portfolio as “portfolio A.” An agent can trade portfolio A at
any scale indexed by NA.

Portfolio payoffs.—Let w (A) denote the payoff of portfolio A. Then

w (A) =

{
NA if s ∈ A
N˜A if s ∈ ˜A

. (17)

Probability of a positive payoff for portfolio A is denoted by πA:

πA ≡ µ (A) . (18)

Portfolio choices.—This choice is made after the agents have discovered
the zi that they will be receiving prior to consumption. There are only
two types of agents indexed by their endowments, rich and poor, only two
portfolios will be chosen in equilibrium. Let A denote the portfolio chosen
by the poor. The rich will take the other side of each s-security trade, and
so the rich choose portfolio ˜A.
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This equilibrium selection is consistent with trades in that the poor wish
to receive income if equilibrium L arises, and they pay the rich if equilibrium
H arises which occurs because the preferences we assume have the property
that U ′′′ > 0.

Figure 2 illustrates a portfolio of a poor agent who is long on securities
s ∈ A, and short on securities s ∈ ˜A.

Figure 2: Portfolio of a low-endowment individual (z1)

Trading strategies as functions of belief formation over x̄.—Nash equilib-
rium beliefs are over the profile of others’ actions in state s. In particular,
the profile in question is the function x (z, s). An agent cares only about
the per-capita action of others, x̄ (s), which is the following function of the
sunspot:

x̄ (s) =

{
0 if s ∈ L ⇔ ω = L
1 if s ∈ H ⇔ ω = H

,

The financial-markets-open game de facto introduces just two additional
actions, namely

(i) which portfolio A to trade, and
(ii) what quantity NA to trade.

c) Sufficiency requires that neither agent type wants to deviate to a dif-
ferent portfolio, i.e., to a set A 6= L. What the agent wants is insurance.
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Given the beliefs specified above, however, his production income depends
on ω alone. At the equilibrium portfolio, the same is true for his asset in-
come. In other words, for the poor agent, asset income is perfectly negatively
correlated with his production income, whereas for the rich, asset income is
perfectly positively correlated. We show that because U ′′′ > 0, the poor are
priced out of claims in states s ∈ H and the rich are priced out of claims in
state s ∈ L.

Trading equilibrium.—An equilibrium entails simple portfolios for all agents.
They are of the form

A = L and ∼ A = H for the poor,

A = H and ∼ A = L for the rich. (19)

That is, the disaster states s ∈ L entail transfers to the poor, whereas states
s ∈ H entail transfers to the rich.

Once A is given, all securities s ∈ L will have the same price that we shall
denote by QL, and all securities s ∈ H will have the same price that we shall
denote by QH. Then

qL = πLQL and qH = πHQH.

For the equal-weighted assets and equal-weighted liabilities portfolios we shall
now use the notation

N(z, s) ≡
{

nL
z if s ∈ L

nH
z if s ∈ H

.

In that case these new definitions and (16) imply that type-i agents’ asset
trades must satisfy the following budget constraint

qLnL
z + qHnH

z = 0.

We assume that the portfolio choices are made simultaneously and non-
cooperatively. Each security trades at the price qL if s ∈ L or qH if s ∈
H. A trading equilibrium is then indexed by L, and associated with these
equilibria is a “disaster probability” πL, defined in (18). Not all πL ∈ [0, 1]
are equilibria, as we shall see, but generally a continuum exists.

Further suppose that there operate financial markets that trade portfolios
paying one unit of consumption good conditional on the realization of ω.
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Security L (H) pays one unit if and only if state ω = L (ω = H) realizes.
Security ω is traded at price qω and the trade occurs before endowments
are delivered. We let nω

z to denote quantity of securities ω purchased by a
type-z individual. An individual of type z ∈ {1, 2} faces the following budget
constraint:

qLnL
z + qHnH

z = 0. (20)

Financial market clearing conditions for securities L and H are:

f1n
L
1 + f2n

L
2 = 0, (21a)

f1n
H
1 + f2n

H
2 = 0. (21b)

where we write ni = nzi to keep notation short.

Timing of the events is summarized in figure 3.

endow. z1, z2
assigned

portfolios
(nL

i , n
H
i ) chosen

ω
realized

production security payoffs
consumption

Figure 3: Timing of events

The first-order conditions for portfolio shares are:

U ′(z + α + 1 + nH
z )

U ′(z + nL
i )

=
πL

1− πL
· q

H

qL
, z ∈ {z1, z2}. (22)

The above implies that the ratio of marginal utilities is the same across
individuals: This is a standard risk-sharing result that obtains here because
markets are complete.

To understand portfolio decisions of the two types consider the case when
the financial markets are closed. While a low-endowment type-1 individual
has lower utility in every state his relative marginal value of consumption is
higher in the low equilibrium:

U ′(z1)

U ′(z2)
>

U ′(z1 + α+ 1)

U ′(z2 + α+ 1)
. (23)

A sufficient condition for the above to hold is a decreasing absolute risk aver-
sion that, in turn, is true if U ′′′(c) > 0.3 So, we expect the low-endowment

3That is −u′′(c)/u′(c) must be decreasing.
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type to purchase securities that pay in state ω = L, nL
1 > 0, and sell securi-

ties that pay in state ω = H (nH
1 6 0). This intuition will be used to derive

sufficient conditions for existence of equilibria.

2.3 Optimal portfolios with logarithmic utility

With U(c) = ln(c) equation (22) simplifies to:

z1 + nL
1

z1 + α + 1 + nH
1

=
z2 + nL

2

z2 + α + 1 + nH
2

=
πL

πH

qH

qL
,

and implies:
qH

qL
=

πH

πL

z̄

z̄ + α + 1
.

Using the budget constraints and the market clearing conditions allows us
solving for the optimal portfolios:4

nL
2 = −πHf1∆z

α + 1

z̄ + α + 1
, nL

1 = πHf2∆z
α + 1

z̄ + α + 1
, (24a)

nH
2 = πLf1∆z

α + 1

z̄
, nH

1 = −πLf2∆z
α + 1

z̄
. (24b)

with ∆z = z2 − z1. Notice that nH
2 > 0 as conjectured.

At the optimal portfolios agents achieve perfect insurance across the two
equilibria. By this we mean that consumption of each type is a fixed, across
the equilibria, fraction of the total good supply. This implies that consump-
tion of any type in the L equilibrium is smaller than in the H equilibrium.5

Then notice that cH2 > cH1 because with the financial markets open the low-
endowment type-1 repays the other type in the H equilibrium. Also in the L
equilibrium consumption ordering is implied by the endowment ordering:

cL2 − cL1 = z2 + nL
2 − z1 − nL

1 = ∆z − πH∆z
α+ 1

z̄ + α+ 1
> 0.

4We use market clearing conditions to determine optimal purchases of securities by
type-1 individuals: nω

1 = −(f2/f1)n
ω
2 , ω ∈ {L,H}.

5 This can be also proven directly. For type 1 we have nL
2
> 0 > nH

2
. Yet, because

f2∆z < z̄, we get:

cH
1
− cL

1
= (α+ 1)

[
1− πLf2∆z/z̄ − πHf2∆z/(z̄ + α+ 1)

]
> 0.

For type 2 the claim is trivial because cL
2
= z2+nL

2
6 z2 < z2+1+α 6 z2+1+α+nH

2
= cH

2
.
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We state this result formally because we refer to it later.

Lemma 2. cLz < cHz , ∀z and there is no “consumption leapfrogging”: cω1 <
cω2 , ω = L,H.

Finally, we would like to point out the effect of group sizes. If each
individual from a larger low-endowment type saved one unit then individuals
in the other, smaller, group would receive more than one unit. For this
reason, the payment to the high-endowment individuals in equilibrium H is
rather large. But a large payment, as is shown later, may destroy equilibrium
H. That is we expect the financial markets to have a strong effect on the
set of possible equilibria when there is a sizable group of endowment-poor
individuals. In societies with a small fraction of poor individuals opening the
financial markets is unlikely to affect the set of equilibria. Yet, in the latter
case significant improvement in risk-sharing across equilibria can be achieved.
This is true because it costs little for the populous high-endowment group to
insure a small group of poor. Formally, |cH1 − cL1 | decreases as f2 increases;
see footnote 5. It is crucial to understand that low-endowment individuals
demand insurance, and high-endowment individuals are willing to provide
it, regardless of the group proportions (f1, f2). The size of the two groups
matters for its effect on the financial market clearing – that is ability of one
group to satisfy demands of the other.

2.4 Creating/destroying equilibria?

Suppose that without the financial markets only the low equilibrium exists.
We now ask if it is possible that after the financial markets open both equi-
libria would exist. In the next section we ask if any of the equilibria could
be destroyed.

Region L in figure 1: Suppose that when there are no financial markets
only the L equilibrium exists: z2 > z1 > αδ, z2 > (α+1)δ. When the financial
markets are open the H and L equilibria exist if:

z1 + nL
1 > αδ, (25a)

z2 + nL
2 > αδ, (25b)

(α + 1)δ > z1 + nH
1 , (25c)

(α + 1)δ > z2 + nH
2 . (25d)
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The first inequality always holds because αδ 6 z1, 0 6 nL
1 . The second

inequality must be checked. The third inequality always holds because z1 6
(α + 1)δ, nH

1 6 0. The fourth inequality cannot hold because z2 > (α + 1)δ
and nH

2 > 0. So, the H equilibrium cannot be created.

Region H in figure 1: Suppose that when there are no financial markets
only the H equilibrium exists: z1 6 z2 6 (α + 1)δ, z1 6 αδ. When the
financial markets are open the H and L equilibria exist if the inequalities in
(25) hold. The first and the second inequality could hold. But the third
inequality cannot hold because z1 6 (1 + α)δ, nH

1 6 0. So, the L equilibrium
cannot be created either. We state these results in the following proposition.

Proposition 3. Opening financial markets cannot create the H (L) equilib-
rium if only the L (H) equilibrium existed under financial autarky.

We now ask if equilibria can be destroyed. Case 1(2) below studies if
opening the financial markets can destroy the H (L) equilibrium if the two
equilibria existed under financial autarky.

Region H+L in figure 1, case 1 : Suppose that the H and L equilibria
exist: (α + 1)δ > z2 > z1 > αδ. When the financial markets are open only
the H equilibrium exists if:

αδ > z1 + nL
1 , or αδ > z2 + nL

2 , (26a)

(α + 1)δ > z1 + nH
1 , (26b)

(α + 1)δ > z2 + nH
2 . (26c)

The third inequality in the above system cannot hold because z1 6 (α+ 1)δ
and nH

1 6 0.

Proposition 4. Opening financial markets cannot destroy the L equilibrium
if both equilibria existed under financial autarky.

Region H+L in figure 1, case 2 : Suppose that when there are no financial
markets the H and L equilibria exist: (α + 1)δ > z2 > z1 > αδ. When the
financial markets are open only the L equilibrium exists if:

z1 + nL
1 > αδ, (27a)

z2 + nL
2 > αδ, (27b)

(α + 1)δ 6 z1 + nH
1 , or (α + 1)δ 6 z2 + nH

2 . (27c)
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The first inequality always holds. The inequality (α + 1)δ 6 z1 + nH
1 in the

third row cannot hold. So, we need to check if the intersection of {z2+nL
2 >

αδ, (α + 1)δ 6 z2 + nH
2 } and {(α + 1)δ > z2 > z1 > αδ} is non-empty. This

can be easily verified by setting z1 < z2 = (α+ 1)δ. In this case nH
2 > 0 and

z2 + nH
2 > (1 + α)δ.

Proposition 5. There exists a non-empty set of parameters such that open-
ing financial markets can destroy the H equilibrium if both equilibria existed
under financial autarky.

2.5 Restricting equilibrium values of πL

Suppose that when the financial markets are closed the L and the H equilibria
exist: (1 + α)δ > z2 > z1 > αδ. When the financial markets are open the H
and L equilibria exist if:

z1 + nL
1 > αδ, (28a)

z2 + nL
2 > αδ, (28b)

(α + 1)δ > z1 + nH
1 , (28c)

(α + 1)δ > z2 + nH
2 . (28d)

The first inequality always holds because z1 > αδ and nL
1 > 0. The second

inequality always holds because |nL
2 | < ∆z and z1 > αδ. The third inequality

always holds because (α+ 1)δ > z1 and nH
1 6 0. The fourth inequality must

be verified. So, both equilibria survive if:6

(α + 1)δ > z2 + nH
2 > z2 > z1 > αδ. (29)

After substituting the formula for nH
2 we obtain:

πL
6

(α + 1)δ − z2
(α + 1)f1∆z/z̄

≡ π̄L (30)

The region where both equilibria exist before and after the financial markets
open is plotted in figure 1, panel B. At the upper boundary of the union of
the H and the H+L regions, the endowment-rich type 2 is indifferent between
working and not.

6Notice that the inequality (α + 1)δ > z2 is redundant. This means that the set of
parameters for which the H equilibrium exists shrinks when the financial markets open.
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Together with the condition for the existence of the two equilibria under
financial autarky, αδ 6 z1 6 z2 6 (α + 1)δ, inequality (30) is the restriction
on equilibrium beliefs and model parameters under which the two equilibria
exist regardless of the financial regime. Intuitively, the probability of the
L equilibrium, πL, cannot be too high as then the high-endowment type-
2 individuals would not work in the high equilibrium and the latter would
cease to exist. This happens because as πL grows the relative price qL/qH

and nH
2 increase. But when a payoff in any state increases incentives to work

decrease. The restriction on πL could also be vacuous, e.g. when ∆z = 0, or
it could be “prohibitive,” e.g. when z2 = (α + 1)δ.

As explained above, the upper bound on πL stems from the restriction
that the high-endowment type-2 agents should support the H equilibrium.
The term (α + 1)δ − z2 is the largest trade that does not destroy type-2’s
incentives to work. The term (α+1)f1∆z/z̄ determines the size of the trade,
see (24b). If there were no heterogeneity, ∆z/z̄ is close to zero, then there
would be no trade; so, any πL would do. (α + 1)f1 is the additional income
earned by the poor when the H equilibrium is selected. The larger it is the
stronger are trading motives and, hence, higher chances of destroying the
equilibrium. Figure 4 illustrates the relation between π̄L and (α, δ). Notice
that as α and/or δ increase the L equilibrium disappears. Similarly, when
α and/or δ decrease the H equilibrium disappears. For intermediate value
of (α, δ) the figure plots the limit on the probability of the L equilibrium.
When α and/or δ are high, but not enough to destroy the L equilibrium,
the probability of the L equilibrium is unrestricted. In this case the high-
endowment type-2 individuals have a substantial “insurance capacity” and
provide for the low-endowment individuals while continuing to work. This
area corresponds to the plateau in the figure.

Observe that the upper bound on πL is linear in δ and hyperbolic in α:

π̄L = [f1∆z/z̄]
−1

[

δ − z2
α+ 1

]

. (31)

It increases with δ as this expands the area where both equilibria are possi-
ble. As α increases, two effects are operational. First, it is harder to destroy
the H equilibrium: the upper bound on consumption of a type-2 individual
increases. Second, trades increase as they are proportional to (1 + α) mea-
suring the increase in the aggregate consumption between the L and the H
equilibrium. However, financial payoffs of any individual cannot not exceed
(1 + α), and the first effect dominates.
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Figure 4: Relation between π̄L and (α, δ).

Lastly, the upper bound on πL depends on δ. This parameter has no
effect on the size of financial trades or equilibrium prices. It also difficult
to calibrate. For these reasons, we provide an alternative upper bound that
does not involve δ. To this end, note that for equilibrium H to exist we must
have z1 > αδ. This imposes an upper bound on δ that can, in turn, be used
in (31):

π̄L
6 [f1∆z/z̄]

−1

[
z1
α

− z2
α + 1

]

. (32)

Size of disasters vs. their frequency.—The size of disasters is governed by
α – The larger is α, the more severe is the drop in the aggregate consumption
– see eq. (2). If α is taken as a measure of disaster size, then the size and
frequency of disasters are positively related: The larger the disaster, the
higher is the likelihood that it can occur in equilibrium. Of course, this
pertains only to coordination failures; the opposite is probably true of wars
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and natural catastrophes.

2.6 Dispersion of endowments

Rising inequality, as measured by ∆z/z̄, reduces the probability of equilib-
rium L. The more dispersed endowments are the larger are incentives to trade
in equilibrium for then the rich value consumption much less than the poor.
On the other extreme, when endowments are similar there is little incentives
to trade. In this case the set of possible sunspot equilibria is unaffected as
π̄L > 1 is not restrictive. When dispersion is small, ∆z/z̄ 6 [δ−z2/(α+1)]/f1
according to (31), then opening the financial markets has no effect on the
probability of equilibrium L. This implies that if a fictitious planner could
redistribute endowments across individuals he would not choose an equal
distribution. That is increased inequality has a positive welfare effect.

2.7 The set of equilibria, A
Having established a perfect correlation between asset positions and actions,
we may abbreviate the definition of equilibrium as follows: Instead of the
objects defined in (14) and (15), we shall refer to equilibrium as the set
A = L of ω values for which agents all set x = 0. I.e., it is the set of ω’s for
which equilibrium L results. The gross asset positions N (·) of the two types
of agents then follow straightforwardly.

The equilibrium set A.—The equilibrium is any set of disaster states the
measure of which does not exceed π̄L. I.e., is the collection of Borel subsets
A ⊂ [0, 1] for which πA ≤ π̄L. Thus the set of equilibria is the set

A =

{

A ∈ B ([0, 1]) |
∫

A

dµ (s) ≤ π̄L

}

. (33)

We have provided only an upper bound on πL. One may ask whether
the use of asset trades can narrow things down further if the game were
different in some way. We can see two options for narrowing down the set
equilibrium πL. One way is to use the theory of the Core in which competition
occurs among coalitions, i.e., a theory in which groups of agents can deviate
from any outcome. A second way to reduce the number of equilibria is to
add stages to the security trading game. Banks could propose securities by
sending messages to agents who then would choose where to trade. Using the
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Core equilibrium concept would lead to an open set problem in the coalitions’
choice of πL for the following reason: The upcoming Lemma shows that a
smaller value of πL Pareto dominates a larger, recognizing, of course, that
the equilibrium asset prices qL and qH depend on πL. In other words, the
equilibria, as indexed by πL, are Pareto ranked. This is our next result.

2.7.1 All agents are better off in equilibrium H

The utility of a type-i individual is: Wi = πLU(zi+nL
i )+(1−πL)U(zi+α+1+

nH
i ). We will later see that the type-1’s portfolio positions (nL

1 , n
H
1 ) decrease

with πL. Hence, utility of a type-1 individual is strictly decreasing in πL. The
type-2’s portfolio positions, on the other hand, increase with πL. That is,
as the probability of L rises, consumption of a type-2 individual increases in
both states but his overall utility still falls as H becomes less likely. Lemma
6 shows that W2 is decreasing in πL as long as πLπHf1∆z/z̄ < 0.5. This
constraint is not vacuous. But it is also not restrictive as it would be satisfied
if, for example, ∆z < 2z̄.

Lemma 6. If πLπHf1∆z/z̄ < 0.5 then dWi/dπ
L < 0, i = 1, 2.

Given this, competition among coalitions would lead them towards the Pareto-
optimal outcome. But at πL = 0 there can be no trade. We then would be
back in a no-financial-asset game that admits both equilibria, L and H .

Alternatively, we may add a prior stage to the security trading game.
Banks could propose securities by sending messages to agents who then would
choose where to trade. It appears that this could be formulated so as to lead
to the same outcome as the Core with the same open set problem. At the
moment, then, we cannot shrink A any further.

2.8 Asset pricing

Suppose now that individuals also receive endowment z0 in period 0 before
types are revealed in period 1. Type-i individual receives endowment zi and
chooses whether to work or not as before. In period 0 individuals are offered
to buy (equity) claims to the aggregate output Y ω,

Y ω ≡







α + 1 if ω = H, prob = 1− πL

0 if ω = L, prob = πL . (34)
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and the risk-free bond that pays one unit of consumption regardless of the
realized ω. The two assets are traded at prices qe and qb that will be deter-
mined later. Timing of events is as follows:
1. Trade risk-free bonds and claims to the aggregate output, consume;
2. Learn your z, trade state-contingent portfolios, produce and consume.

The period 0 budget constraint is:

c0 + qene
0 + qbnb

0 = z0. (35)

Since all individuals are symmetric in period 0 we do not use index i. For
the same reason purchases of the two assets, equity claim and bond, is zero
in equilibrium:

ne
0 = nb

0 = 0. (36)

So, everyone simply consumes his endowment: c0 = z0. The two asset prices
satisfy the following Euler equations:

qb = βE

[
U ′(zi + nω

i )

U ′(z0)
1

]

, (37a)

qe = βE

[
U ′(zi + nω

i )

U ′(z0)
Y ω

]

. (37b)

The returns on the two assets then are:

Rb = 1/qb, Re = E[Y ω]/qe. (38)

The interim expected utility:

Vz(π
L, nb, ne) = πLU(z+nb+nL

z )+(1−πL)[U(z+α+1+nH
z +nb+(α+1)ne)−κ].

The life-time utility

max
nb,ne

U(z0 − qbnb − qene) + β
∑

z∈{z1,z2}

fzVz(π
L, nb, ne).

Price of the risk-free bond at nb = ne = 0 is:

qb = β
∑

z

fz
πLU ′(z + nL

z ) + (1− πL)U ′(z + α + 1 + nH
z )

U ′(z0)
. (39)
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Price of a claim to the aggregate endowment (equity) is:

qe = β
∑

z

fz
U ′(z + α + 1 + nH

z )

U ′(z0)
(1− πL)(α + 1). (40)

Then the expected return on equity is:

E[Re] =
(α + 1)(1− πL)

qe
=

U ′(z0)

β
∑

z fzU
′(z + α+ 1 + nH

z )
,

where the optimal portfolios are:

nH
1 = −πLf2∆z

α + 1

z̄
, nH

2 = πLf1∆z
α + 1

z̄
.

As the probability πL increases, probability that an equity claim pays
decreases. So, the equity claim is valued less and it must offer a higher return.
At the borderline case with πL = 0 the risk-free bond and the equity claim
yield the same return. We state these results in the following proposition.

Proposition 7. With logarithmic preferences the expected equity premium is
a) always non-negative, and b) an increasing function of πL.

Proof. By direct differentiation.

Next, we compute the price of a disaster insurance. The disaster insurance
pays one unit of consumption good when the L equilibrium realizes. Notice
that the risk-free bond pays (1, 1) in the two states and a claim to equity
pays (α+1, 0). Then a disaster insurance claim generates the same payoff as
a portfolio comprised of 1 bond and − 1

α+1
equity claims. So, in the absence

of arbitrage the price of the disaster insurance must be:

qd = qb − 1

α + 1
qe = β

∑

z

fz
πLU ′(z + nL

z )

U ′(z0)
. (41)

Infinite horizon: for better quantitative results we could study a repeated
game.
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2.9 News shock

The simplest treatment of a news shock is a prior signal ξ on s, drawn from
the density g (ξ | s). Denote the posterior over s by µ (s | ξ) . This in general
makes the states not equally likely but the main thing is that the signal
changes the disaster probability from µ (A) to µ (A | ξ) .

In order that the previous analysis should apply, however, it is easier to
have the new shock leave the likelihood of s unchanged, but to change the
designation of which equilibrium is associated with which value of s. We now
put a prior distribution ν over A and, derived from ν, a prior distribution λ
over

[
0, π̄L

]
. The news consists of an announcement of a particular A ∈ A

and, hence, an implied value for πL ∈
[
0, π̄L

]
. The measure ν is an object

different from µ; the latter tells us the likelihood of various ω’s occurring,
whereas ν tells us the likelihood of which combinations of the ω’s are to lead
to equilibrium L. Thus the measure ν generally will not be Lebesgue measure
µ but, rather, can put greater weight on some Borel subsets of A and less
weight on others.

In other words, a news shock is an announcement of the list of ω ∈ [0, 1]
that are to be considered disaster states. If many ω’s are announced to be
disaster states, then disasters become more likely, and this will affect asset
prices as well as asset trading. The list of disaster states will be denoted by
A. Suppose that the announced A is drawn randomly from the equilibrium
set A taking ν (A) as the measure. This implies πL which is drawn randomly
from the set of numbers not exceeding π̄L. The prior measure over πL is λ,
where

λ(πL) =

∫

A

µ (A) dν (A) (42)

When A is announced, beliefs shift from ν to a point mass on A or, from
λ to a point mass on πL. This has the interpretation of a belief shock, since it
does not affect fundamentals. From now on we shall refer to the news shock
as the revelation of a specific value πL ∈

[
0, π̄L

]
.

Do stock prices lead output?—We ask if qe is a leading indicator of the
aggregate output Y ω. Conditional on πL, expected output is E[Y ] = (1 −
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πL)(α + 1). Then before πL is revealed asset prices are:

q̃b = β

∫ π̄L

0

∑

z fz[π
LU ′(z + nL

z ) + (1− πL)U ′(z + α + 1 + nH
z )]

U ′(z0)
dλ(πL),

(43a)

q̃e = β

∫ π̄L

0

∑

z fzU
′(z + α + 1 + nH

z )

U ′(z0)
(α + 1)(1− πL)dλ(πL). (43b)

The news effect is the difference between the expected price of a portfolio
and the realized price after the πL is revealed:

Neωse ≡ q̃e − β
∑

z

fz
U ′(z + α + 1 + nH

z )

U ′(z0)
(1− πL)(α+ 1), (44a)

Neωsb ≡ q̃b − β
∑

z

fz
πLU ′(z + nL

z ) + (1− πL)U ′(z + α + 1 + nH
z )

U ′(z0)
. (44b)

Because price of equity is a decreasing function of πL it is positively correlated
with the expected aggregate output E[Y ]. So, the stock market index is a
leading indicator of output.

The financial market volume7 is:

v =
∑

w∈{H,L}

|f2nw
2 | = (1 + α)f1f2

{πL

z̄
+

πH

z̄ + α + 1

}

. (45)

So, when πL increases the market volume also increases. That is, the trading
volume leads the aggregate output.

In a related paper, Angeletos and La’O (2014) also study shocks to beliefs
about the actions of others. They do not have multiplicity of equilibria as
we do, but they instead have aggregate shocks. The presence of the latter,
they show, also allows shocks to beliefs over actions to have real effects.

Is lagged consumption a sufficient statistic for current consumption?—
Hall (1978) derived the implication that no variable apart from current con-
sumption should be of any help in predicting future consumption. Hall did
find that real disposable income did not help predict aggregate consumption,
but that an index of stock prices did help predict it. In our two-period model

7A symmetric formula can be defined using positions of a type-1 individual.
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the question can be posed as follows: Is z0 a sufficient statistic for predicting
y? The answer is “no” since news to πL cannot be reflected in z0 which is
an endowment, and yet low πL is a good news for Y and, hence, for the con-
sumption of all agents. Although the proportions consumed by each type do
change with πL, lemma 2 shows that the consumption of each type is higher
in equilibrium H than in equilibrium L.

A low realization of πL is also a good news for the equity price, indicating
that equity prices can help predict future consumption. Assume that z0 is a
random variable drawn from a known distribution. News then consists of a
simultaneous “announcement” of (z0, π

L) that is then followed by trade in the
financial markets. It turns out that stock price is also not a sufficient statistic
for Y . The level of prices depends on z0 and therefore one needs to know z0
in order to be able to predict future consumption. But knowledge of the pair
(z0, q

e) is sufficient to predict future consumption, consistent with what Hall
finds empirically. Formally, consider a first-order approximation of qe around
(z0, π

L) = (E(z0), 0) : q
e = k0 + kzz0 − kππ

L where k0, kz, kπ > 0. Expected
aggregate consumption is: E(Cw) = z̄ + α + 1 − πL(α + 1). Then consider
the following regression specification relating the expected consumption to
the first-stage aggregate consumption z0 and the equity price qe: E(Cw) =
β0+βzz0+βqq

e = β0+βzz0+βq(k0+kzz0−kππ
L). One should find significant

βz and βq. Moreover, βq should be positive while the coefficient βz should be
negative.8

2.10 Illustrative example

Heathcote, Storesletten, and Violante (2006, Figure 4) report that an average
of the variance of log wages and the variance of log earnings for a 33-year-old
worker is 0.33. That is

var(z) = f1f2(ln(z2)− ln(z1))
2 = 0.33. (46)

With f1 = 0.50 we get z2/z1 = x ≡ exp(2/
√
3) ≈ 3.17. So, we get: z1 =

z̄2/(1 + x), z2 = z̄2x/(1 + x). The restrictions imposed by existence of both
equilibria are: αδ 6 z1 6 z2 6 (α + 1)δ.

We assume δ = 3.5. We choose z̄ = 2.82, α = 0.14 so that z̄/(z̄+α+1) ≈
0.71 as in Barro (2006) and the implied upper bound on πL is 0.020, similar
to Barro’s (2006) estimate of 0.017.

8Simple coefficient matching gives: βq = (α+ 1)/kπ > 0, βz = −βqk0 < 0.
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We set z0 so that no growth is expected in the aggregate consumption:

z0 = z̄ + (α+ 1)E[πL]. (47)

variable value moment
δ 3.50 –
f1 0.50 Groups of equal size

(z1, z2) (1.32,4.28) Coefficient of variation for endowment is 0.33
α 0.23 29% loss of output in the L equilibrium
z0 see (47) Expected consumption growth is zero

Table 1: Parameters for the numerical example

Table 1 collects all the parameter assumptions. Figure 5 plots returns
of the risk-free bond, the equity and the disaster claims. It is assumed that
z0 = z̄ + (a + 1)(1 − πL), that is the expected aggregate consumption is
constant. The vertical line marks the upper bound on the probability of
equilibrium L, π̄L. When πL = 0 then there is only one state of the world –
the H equilibrium – and the equity claim and the bond pay the same. When
πL reaches its upper bound 0.02 the return on equity is 0.64% and the risk-
free return is -0.23% implying a premium of 0.87%. Despite being relatively
small, the premium in the data is about 5%, we would like to emphasize that
this premium reflects only the endogenous disaster risk as there are no other
sources of uncertainty in the model. As another comparison consider the
results in Barro (2006): assuming logarithmic preferences this model predicts
only 0.24% premium.9 The premium and the return on the disaster claim are
increasing in πL. At πL = 0.04 the premium is sizeable and measures 1.74%.
Finally, the return on equity and the risk-free bond are much higher than that
if the disaster claim. The reason for this is that individuals expect a higher
consumption growth if equilibrium H realizes. This makes the disaster claim
to be very attractive as it pays when consumption is scarce; so, individuals
would be willing to purchase it despite the low return that it offers.

9We assume that the bond is risk-free, that is it pays fully even if a disaster occurs.
Then, assuming logarithmic preferences, the premium equals approximately σ2

c + πd(1 −
d)(1/d−1) where σc is the consumption growth volatility, πd is the probability of a disaster,
d is the output ‘saved’ in a disaster state. Setting σc = 0 we are left with the premium
component that stems from the disaster risk alone. Setting πd = π̄L = 0.02 and d = 0.71
we get πd(1 − d)(1/d− 1) = 0.0024.
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Figure 5: Return on the bond and the claim to the aggregate output.

3 Extensions of the results

We now discuss how the model relates to several lines of research.

3.1 Correlated equilibria

The title of the paper notwithstanding, our methods carry over to the case
in which the sunspot is not observable, i.e., when the coordinating device is
not contractible or securitizeable. In a correlated equilibrium in which agent
i receives a private message ηi, and the η’s are correlated. And yet we will
now show that in principle asset trading will generally place restrictions on
the correlated equilibria in much the same way as it places restrictions on
the sunspot equilibria.

Since it is not reasonable to have markets on individual signals, it is
reasonable to ask if our results carry over to correlated equilibrium without
an aggregate public signal. To discuss this we must distinguish assets such as
Arrow securities that pay as a function of the realization of some exogenous
state, from assets that pay as a function of the set of actions that agents take.
An example of the latter is an index fund linked to the S&P 500 that pays
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based on earnings that, in turn, depend on actions taken by the economy’s
agents.

A correlated equilibrium is a bivariate distribution over actions xi and
messages ηi that players receive. In this anonymous game in which no player
can influence the aggregate outcome, the distribution of the signals alone
then determines the distribution of actions. Thus in a correlated equilibrium
the distribution of actions is determined by the empirical distribution of
the signals. In the limit as the number of agents gets large, the empirical
distribution of the signals coincides with the theoretical distribution. Well-
known representation results allow us to relate this to an aggregate extrinsic
statistic such as the scalar s ∈ [0, 1] . We can index equilibrium play by the
empirical distribution of the signals and as long as no individual agent can
influence the aggregate outcome, asset trading based on the distribution of
actions (when they are securitizeable) is equivalent to trading on s.

De Finetti’s (1931) representation theorem implies that our results carry
over exactly when the signals are binary, as the economy gets large. Suppose
that agents are equally likely to get a signal so that the signals are exchange-
able. De Finetti’s result states that the (ηi)

N
i=1 is a sequence of exchangeable

Bernoulli random variables if and only if the CDF of the vector η has the
representation

Pr (η1, ..., ηN) =

∫

stN (1− s)N-tN dµ (s) (48)

where µ is a measure on [0, 1], though not necessarily Lebesgue measure as we
have assumed. Let νN

(
ηN

)
≡ Pr (η1, ..., ηN). For fixed N there is a one-to-one

correspondence between νN and s. For finite N , the empirical distribution
will generally differ from νN but as N → ∞, they coincide almost surely
because our game has no discontinuities at N = ∞. And if equilibrium
play depends on νN and not on players’ names as N → ∞, s becomes a
sufficient statistic for all the moments νN and, hence, for what equilibrium
gets selected. In other words, trading on “sunspots” cannot improve payoffs
over trading on the equilibrium distribution of actions.

When the signal space is not binary, the representation results do not
generally allow the correlated equilibrium to be representable by a sunspot
belong to the unit interval. Here we may cite the extension of de Finetti’s
results by Hewitt and Savage (1955). When, for example the ηi ∈ R are
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exchangeable, instead of (48) we have

νN
(
ηN

)
=

∫

∆(R)

N∏

i=1

s (ηi) dµ (s)

where µ is no longer a measure on the unit interval, but a measure over
s ∈ ∆(R), i.e., a measure over measures on the line. The dimensionality of
what one may call a sunspot is then generally larger than a scalar variable
as we have modeled it.

3.2 Global games

Our results also apply to “global games” in which there are intrinsic (payoff
relevant) aggregate shocks. Instead of writing the output equation as y =
(α + x̄)x, we may alternatively write it as:

y = (1 + αx̄)x,

so that α could represent the return to a currency attack or some other
coordination game. Then we could assume that α ∈ {0, 1} and agents do
not know the realization of α. It is known that in such situations a little
uncertainty can, under certain informational assumptions, lead to a unique
equilibrium. This is a different way of restricting the set of equilibria in
games that involve intrinsic uncertainty, as Goldstein and Pauzner (2005)
have shown in the context of bank-run models. Our model restriction on
equilibria applies to such models too, at least when the uncertainty over α is
large enough so that the Carlsson and Van Damme (1993) argument cannot
eliminate the multiplicity.

Conclusion

In a model in which multiple Pareto-ranked equilibria may arise, we have
distinguished between sunspots and the equilibria that result therefrom. By
introducing asset trading we have endogenized the mapping from the sunspot
to equilibrium play and derived a bound on the probability with which the
disaster equilibrium occurs.

We have then used the model to analyze several phenomena, including
the effects of shocks to beliefs about the actions of others and how they
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manifest themselves in asset prices, and the relation between disaster size
and probability on the one hand, and the disaster premium on the other.

Finally, we have shown that asset trading can reduce the incidence of
coordination failures. Our model points to costs and benefits stemming from
changes in the equilibrium set.
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A Proof of lemma 6

Proof.

dWq

dπL
=u(z1 + nL

1 )− u(z1 + α + 1 + nH
1 )

︸ ︷︷ ︸

negative

+ πLu′(z1 + nL
1 )

dnL
1

dπL
+ (1− πL)u′(z1 + α + 1 + nH

1 )
dnH

1

dπL
︸ ︷︷ ︸

both terms are negative

< 0.

Next

dW2

dπL
=u(z2 + nL

2 )− u(z2 + α + 1 + nH
2 )

︸ ︷︷ ︸

negative

+ πLu′(z2 + nL
2 )

dnL
2

dπL
+ (1− πL)u′(z2 + α + 1 + nH

2 )
dnH

2

dπL
︸ ︷︷ ︸

both terms are positive

=u(z2 + nL
2 )− u(z2 + α+ 1 + nH

2 )

+ πLπHf1∆z(α+ 1)

[
u′(z2 + nL

2 )

z̄ + α + 1
+

u′(z2 + α + 1 + nH
2 )

z̄

]

,
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where the last equality relies on the optimal portfolios derived in 24b. Then
by the concavity of u and the fact that u′(z2 + α + 1 + nH

2 )/u
′(z2 + nL

2 ) =
(z̄ + α+ 1)/z̄ we get

dW2

dπL
6− u′(z2 + a+ 1 + nH

2 )(α + 1)

+ πLπHf1∆z(α + 1)

[
u′(z2 + nL

2 )

z̄ + α + 1
+

u′(z2 + α + 1 + nH
2 )

z̄

]

=− u′(z2 + a+ 1 + nH
2 )(α + 1) + 2πLπHf1∆z(α + 1)u′(z2 + α+ 1 + nH

2 )/z̄

=u′(z2 + a+ 1 + nH
2 )(α + 1)[−1 + 2πLπHf1∆z/z̄] < 0.

Notice that all of the derivations used the fact that u(c) = ln(c).

B Contour plot of π̄L

Figure 6 plots contours of (α+1)δ−z2
(α+1)f1∆z/z̄

≡ π̄L for the parameters described in
1. To have multiple equilibria with trading of assets we need δ ≥ z2

1+α
. When

this holds as an equality, we have π̄L = 0, which is the π̄L = 0 contour.
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Figure 6: Contours of π̄L
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